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Resonances are defined as the poles of the scattering matrix. The poles are associated
with the complex eigenvalues of the Hamiltonian which are embedded in the lower
half of the complex plane. The asymptotes of the corresponding eigenfunctions are
exponentially diverged. Therefore, the resonance eigenfunctions are not embedded in
the Hermitian domain of the Hamiltonian. The time asymmetric problem is discussed
for these types of non-Hermitian Hamiltonians and several solutions of this problem are
proposed.
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1. RESONANCES IN NON-HERMITIAN QUANTUM MECHANICS

In the conventional quantum mechanics (QM) the Hamiltonians must be
Hermitian. Non-Hermitian Hamiltonians do apper however, in the study of the
resonance phenomena (Moiseyev, 1998a; Taylor, 1972) and in other physical con-
texts (Fogedbyet al., 1995; Kadanoff and Swift, 1968; Kim, 1995; Lieb and Wu,
1972; McCoy and Wu, 1968) which are described below.

There are many different reasons for using non Hermitian quantum mechan-
ics. One is to simplify the calculations. There are problems that are quite difficult
and sometimes impossible to solve even numerically. For example, when studying
the dynamics of molecular systems where the electronic and the nuclear coordi-
nates are strongly coupled to one another and the Born-Oppenheimer approach
is not applicable. In such cases the non Hermitian quantum mechanics enables
us to take into consideration the coupling between the channels that are open for
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dissociation and ionization in a simple way (Narevicius and Moiseyev, 1998, 2000).
Another example is studying the dynamics of a system which is coupled to a bath.
Often the solution of the full problem is impossible due to the current available
computational sources and technology. The calculations become possible by in-
cluding complex absorbing potential terms (i.e., non Hermitian operators) into the
Hamiltonian which introduce the environmental dynamical effects on the studied
system (Moiseyer, 1998b; Riss and Meyer, 1993). Another obvious reason to use
non Hermitian quantum mechanics is when effects which cannot be described by
Hermitian Hamiltonians are to be considered. Such as, diffusion effects, spatial
fluctuations in inhomogeneous systems, and effects induced by extended defects
in type-II superconductors subject to a tilted external magnetic field (Hatano and
Nelson, 1996, 1997, 1998).

For the sake of clarity let us first discuss here the use of non-Hermitian
quantum mechanics for calculating the dynamical properties of systems which are
prepared in a single resonance state. In hermitian QM a resonance state isnot an
eigenstate of the Hamiltonian but a wavepacket which describes the system in a
metastable state. The system in a metastable state has a finite life time. As time
passes, the system decays into subsystems. For example, in unimolecular reactions
the subsystems are the chemical products. In photoinduced reactions, the subsys-
tems are atomic and/or molecular ions and electrons. In the interaction of atoms
with strong laser fields, the subsystems can be the atoms in their ground electronic
state and high energy photons (even short wavelengths in the X-ray regime). In
scattering experiments of atoms and molecules from solid surfaces, the resonances
are desorption states. The wavepacket that describes the resonance phenomena can
be expanded in a basis set of eigenfunctions of the Hermitian Hamiltonian. For
long living resonances (so called narrow resonances) the dominant contributions
to the basis set expansion of the resonance wavepacket are of eigenstates that are
embedded in the region of the spectrum where the density states are in particular
high.

In non-Hermitian quantum mechanics a resonance state is a pure state. The
resonance state is an eigenstate of the Hamiltonian which is solved under the
requirement of outgoing boundary conditions. Therefore, the resonance
states are associated with complex eigenvalues,{Ej = ε j − i0 j /2}, with
corresponding eigenfunctions that asymptotically are exponentially diverged,
9res

j → exp(+ik j r ) wherekj ≡ |kj | exp(−iα j ) =
√

2mEj /h. Here we assume
for the sake of clarity and simplicity but without loss of generality that the poten-
tial has a cutoff at the threshold energyE = 0. It is clear that the resonance states
arenot embedded in the Hermitian domain of the Hamiltonians and are not in
the Hilbert space. It is however possible to carry out a similarity transformation,Ŝ
which will impose on the resonance eigenfunctions exponentially decaying behav-
ior and they will become part of the generalized Hilbert space (in such a case the
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definition of the inner product should be generalized as will be discussed briefly
later). That is,

(ŜĤ Ŝ−1)
(
Ŝ9res

j

) = Ej
(
Ŝ9res

j

)
. (1)

where,

Ej = εj − i0 j /2 (2)

and asr →∞ then,

Ŝ9res
j → 0 (3)

although,

9res
j →∞. (4)

Moiseyev and Hirschfelder have shown that there are infinite types of similar-
ity transformations whereas the complex scaling (i.e.,Ŝ9(r ) = 9(r exp(+i θ ))) is
a specific well known possibility. Other similarity transformations are the ex-
terior scaling and the smooth exterior scaling transformations which are dis-
cussed in Hoiseyev (1998a). Let us define the complex scaled Hamiltonian as
H(θ ) = Ŝ(θ )Ĥ Ŝ−1(θ ). The square integrable eigenfunction ofH are the bound
and the resonance states. Bound states implies thatF(E) = 0. The real eigen-
values associated with the bound states and thecomplexeigenvalues associated
with the resonance states areθ independent. The corresponding eigenfunctions
are varied however withθ . The resonances become square integrable provided
that θ ≥ α where tan(2α) = 0/(2ε) as defined above (Moiseyev, 1998a). The
scattering states are however oscillating non–square integrable functions which
are bounded and embedded in the generalized Hilbert space. The eigenvalues as-
sociated with the scattering states get complex values which are varied withθ .
Such that,E(scattering) = |E(scattering)− Et | exp(−2i θ ), whereEt stands for
the threshold energies. The stationary solutions of the complex scaled Schr¨odinger
equation are given by,

9(t) = exp(−i Et/h)φE (5)

where,

H(θ )φE(θ ) = EφE(θ ) (6)

where E getsθ independent complex discrete values for the resonances (i.e.,
complex poles of the Scattering matrix since they are associated with out-going
waves and the amplitudes of the incoming waves vanish) and a continuum of
complex values which are rotated into the lower half complex energy plane by the
angle 2θ .
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2. THE TIME ASYMMETRIC PROBLEM AND ITS RELEVANCE TO
THE COMPUTATIONS OF MEASURABLE QUANTITIES

It is clear from the discussion given in the previous section that the station-
ary solutions of the time-dependent Schr¨odinger equation with complex scaled
Hamiltonian are bounded functions (i.e., they do not diverge exponentially in the
asymptotic limit) as time increases tot →+∞. As a matter of fact if the popula-
tion of the bound states by the initial wavepacket is zero then9(t)→ 0 ast →∞.
However, in that case9(t)→∞whent →−∞. This is the time asymmetry phe-
nomenon in non-Hermitian QM. In Hermitian quantum mechanics we have the
freedom to decide whether as time passest →∞ or t →−∞. It is equivalent
in some sense to the freedom to choose in what direction the clock hands rotate
as time passes. In non Hermitian QM we break the time symmetry requiring that
the Hamiltonian has complex eigenvalues which are embedded in the lower half
of the complex energy plane. The hands of the clock should move clockwise as
time passes when the complex poles and the rotating continuum are in the lower
half complex plane and should move anticlockwise as time passes if the complex
eigenvalues are in the upper half complex plane.

One may argue that since time is a parameter in the time-dependent
Schrödinger equation and therefore any measurable dynamical property is repre-
sented by a time-independent operator, one can calculate the probability to measure
a given dynamical property and the probability amplitude to get specific products in
a time-dependent experiment by using the time-independent scattering theory and
avoid the wavepacket time propagation calculations. For non Hermitian QM the
complex scaled time-independent scattering theory has been developed. It was also
extended to the cases where Hamiltonian is time-dependent. The Hamiltonian be-
comes time-dependent for example when the system (e.g., atoms or molecules) in-
teracts with electromagnetic fields, that can be induced even by high-intensity short
laser pulses. For time-independent complex scaled Hamiltonians, the dynamics is
governed by the function (1+ V G(E))80 where80 is the complex scaled eige-
function of the complex scaled Hamiltonian,H0 = H− V andG = (E −H)−1.
See for example the calculations of Helium diffraction from corrugated copper
surfaces and note the remarkable agreement to experimental results (Peskin and
Moiseyev, 1993a). For time-dependent Hamiltonian the Green operator within the
framework of the (t, t’) formalism is given by,G = (E − [H(t ′ − i h ∂

∂t ′ ])
−1 (Peskin

and Moiseyev, 1994). For an example of the use of this formalism see the calcu-
lations of the kinetic energy distribution of the ionized electrons of Xenon atoms
that were exposed to high-intensity UV radiation (Peskin and Moiseyev, 1993b).

There are cases however where one can not avoid the need to calculate
time-dependent expectation values. The amplitude of the probability to mea-
sure emitted high frequency radiation due to the nonlinear interaction between
atoms or molecules and UV or visible electromagnetic fileds is associated with
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the Fourier transform of the time-dependent dipole moment,d(t). In non Her-
mitian QM, d(t) = (9L(t)|d̂|9R(t)). Let us discuss first the case where9R(t)
and9L(t) are the right and left solutions of the time-dependent Schr¨odinger
equation when the Hamiltonian is time-independent. The right eigenfunctions
of the complex scaled HamiltonianH satisfy the equationH(θ )8R

j = Ej8
R
j

where {Ej } are complex valued. According to definition, the left eigenfunc-
tions ofH(θ ) are associated with theright eigenfunctions ofH†∗(θ ). It is easy
to check that when the HamiltonianH(θ = 0) is real it is true for the com-
plex scaled Hamiltonian thatH†(θ ) = H(−θ ) = H∗(θ ) (as an example Hamil-
tonian one may useH(θ ) = e−2i θ

2
∂2

∂x2 + V(x ei θ )). Therefore,8L
j = 8R

j ≡ 8 j .

Since the time-dependent wavefunctions satisfyH(θ )9R(θ , t) = i h ∂
∂t9

R(θ , t)
andH†∗(θ )9L(θ , t) = −i h ∂

∂t9
L(θ , t), it is obvious that the expansion in the basis

set8 j for the right and left wavefunction is

9R(t) =
∑

j

Cj exp(−i E j t/h)8 j (7)

and

9L(t) =
∑

j

Cj exp(−i E j t/h)8 j . (8)

SinceFEj < 0 for all eigenstates, except the bound and the threshold states that
have real valued eigenvalues, it is clear thatd(t) exponentially diverges ast →∞
provided the initial wavepacket isnot in an eigenstate ofH(θ ). In other words the
terms that cause the expectation value to diverge exponentially are off-diagonal in
the basis set8 j (the normalization integral is time-independent).

When the HamiltonianĤ is time-dependent{8 j } and {Ej } are replaced
respectively by the eigenfunctions and eigenvalues of the complex scaled Floquet
like operator,−i h ∂

∂t ′ +H(t ′, θ ).

3. ON THE FERMI’S SOLUTION FOR THE TIME ASYMMETRIC
PROBLEM IN NON-HERMITIAN QM

It is clear that time-independent scattering theory for non-Hermitian Hamil-
tonian can not be derived by solving the time asymmetric problem. An important
point in the derivation of time-independent scattering theory for non-Hermitian
time-independent Hamiltonians is the use of Lorentzian energy distributions with
−∞ < E < ∞ that has an exponential time evolution along the positive time
propagation direction only. Fermi suggested this approach in order to avoid the
nonzero transition probability to excite atom B by absorbing energy emitted by
an excited atom A, for time which is smaller thanr/c, wherer is the distance
between the two atoms (Fermi, 1932). This approach however is a consequence
of a general theorem (see Bohmet al., 2002; Nicolaides and Beck, 1977a,b and
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references therein and also Nicolaides’ contribution to this book). The require-
ment of−∞ < E < ∞ implies that time extends over 0< t < ∞ and not over
−∞ < t < ∞ as in the conventional (Hermitian) quantum mechanics. Therefore
Fermi approach seems to break up the time reversal symmetry in non-Hermitian
QM. Very recently Bohm and his coworkers have shown that the Fermi’s ap-
proach does not violate causality when the transformed Fourier is taken for the
time-propagated Gamow states (Bohmet al., 2002). The Gamow states, known
also as resonance states, are obtained by imposing the Siegert outgoing boundary
conditions on the solution of the Schr¨odinger equation. Therefore, the resonance
Gamow states are not in the Hermitian domain of the Hamiltonian and are not in
the Hilbert space. They are however embedded in the generalized Hilbert space
when they are scaled by a complex factor exp(i θ ) (Moiseyev, 1998a; Reinhardt,
1982). Upon complex scaling they become square integrable and can be counted
by their nodes as regular bound states. The time asymmetry in non-Hermitian QM
has been discussed in Bohmet al.(2002), Fermi (1932), and Nicolaides and Beck
(1977a,b) for time-independent Hamiltonians. However, using the (t, t’) formalism
(Peskin and Moiseyev, 1993b) which led us to the derivation of time-independent
scattering theory for time-dependent Hamiltonians (Peskin and Moiseyev, 1994),
all arguments concerning the time asymmetry problem and its solution hold also
for our studied case as well.

For coherency of the analysis we start with a brief introductory comment on
the definition of “bra” and “ket” states in non-Hermitian QM when the Hamilto-
nian is time periodic. The quasi-energy states are time periodic functions. Let us
expand them in the Fourier basis set,fn ≡ exp(iwnt), wheren = 0,±1,±2, . . .
The Fourier components,φn, kres, are spatial functions. They are the components
of the right eigenvector of the Floquet Hamiltonian matrix,Hn′,n = 1/T

∫ T
0 dt

( f ′n(t))∗[−i h ∂
∂t + Ĥ (q exp(i θ ), t)] fn(t).Where,Ĥ (q exp(i θ ), t) = Ĥatom/molecule

(complex scaled)+ eε0 exp(+i θ )
∑

j ẑj cos(ωt). Note that in the calculation of
the Floquet matrix elements we used the usual scalar product. Without loss of
generality we consider the case where the Floquet matrix is equal to its transposed
(i.e.,H is a complex symmetric matrix). In such a case the “left” eigenvectors
of H are equal to the “right” one. Therefore, we should not take the complex
conjugate of the spatial Fourier components when we calculate expectation values.
Consequently, the Floquet eigenstates are orthonormal functions under the defi-
nition of: (1/T)

∫ T
0 dt <

∑′
n f ′n(t)(φn′,k′res

(q))∗|∑n fn(t)(φn,kres(q)) >= δk′res,kres.
The time period isT = 2π/ω and 〈. . .〉 stands for the usual definition of the
scalar product. Following these formal results we conclude that this definition
of the inner product provides a probability to detect the electronsomewherein
space which is equal tooneat any given time. This is of course true since the
number of particles in the entire space is conserved. However, the high energy
photons are generated only due to the interaction of the electrons with the nuclei.
On the basis of this physical argument we claim that the number of electrons
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should not be conserved inside a finite box where the electrons interact with the
nuclei. As time passes, the electrons escape from the finite box. Outside of this
finite box we assume that the electron–nuclei interaction is equal to zero. The
size of the box can be as large as one wishes. Within the framework of this box
quantization formalism the number of the electrons inside the box exponentially
decays to zero as time passes. We impose this time-dependent normalization on
the quasienergy resonance solutions by introducing the following complex-phase
factors: exp(−i Ek′res

t) = exp(−iEk′res
t) exp(− 1

20k′res
t) for the “ket” Floquet states,

and exp(+i E∗kres
t) = exp(+iEkrest) exp(− 1

20krest) for the “bra” states. Under this
modification the probability to detect the system in a given atomic/molecular
quasi-energy resonance (metastable) state, decays exponentially in time. The
decay rate is0 and therefore within the framework of the box-quantization
condition mentioned above, (8kres(t)|8kres(t)) = exp(−0krest) when t = jT ,
where j = 0, 1, 2. . . . To obtain this result we used the facts that, (. . .) =
〈exp(−i Ekrest)

∑
n′ fn′ (t)(φn′,kres(q))∗| exp(−i Ekrest)

∑
n fn (t)φn,kres(q)〉; fn(t =

jT ) = ±1; and
∑

n < (φn,kres)
∗|φn,kres

>= 1.
This time-dependent normalization for the right and left eigenstates is associ-

ated with the Fermi’s approach which enables the derivation of time-independent
scattering theory for non-Hermitian (NH) Hamiltonians. However, the question
how one can calculate time-dependent expectation values in NH QM without the
need to take the Fourier components of the forward time-propagated wavepacket
is still unsolved. We can phrase this question in another way. Can one associate the
time-dependent “bra” state with the solution of the time-dependent Schr¨odinger
equation with a non Hermitian complex scaled Hamiltonian? The answer to this
question is no. Let us explain it:

In Hermitian QM it is well known that the Fourier components of9(t →
±∞) (with time running forward and backward) are given by,

9±E = ∓i hĜ±(E)9(0) (9)

where,

Ĝ±(E) = lim
ε→0+

(E − H ± i ε)−1. (10)

It implies that in order to carry out a forward time-propagation in Hermitian QM,
a negative imaginary potential term has to be added to the Hamiltonian whereas to
get a back-propagation a positive imaginary potential term has to be included in
calculations. Sinceε is a constant parameter it shifts the eigenvalues from the lower
half of the complex energy plane to the upper half plane, while the eigenfunctions
remain the same. That is,

H(ε)ψ j = Ej (ε)ψ j (11)

H∗(ε)ψ j = E∗j (ε)ψ j (12)
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where, H(ε) = H − i ε and Ej (ε) = Ej − i ε. These properties of the non-
Hermitian Hamiltonian,H, allow us to find a relationship between its right and
left eigenstates,ψR, ψL. In the case where both eigenfunctions are real functions
(this condition can be always satisfied for the real and Hermitian HamiltonianĤ ),
ψR

j = ψL
j ≡ ψ j . Then the eigenfunction expansion of the time-dependent right

and left wavefunctions are

9R(t, ε) =
∑

j

Cj exp(−i E j (ε)t/h)ψ j (13)

and,

9L(t, ε) =
∑

j

Cj exp(+i E∗j (ε)t/h)ψ j (14)

whereCj =< 9(0)|ψ j > provided that9(0) is a real function as well. The time
evolution of an expectation value of an operatorÔ is given by,

< O > (t, ε) =
∫

all-space
9L(t, ε)Ô9R(t, ε) dv/

∫
all-space

9L(t, ε)9R(t, ε) dv

(15)
Let us return to the non Hermitian complex scaled HamiltonianH(θ ). The

complex scales operators that are equivalent toH(ε) andH∗(ε) are correspondingly
H(θ ) andH(−θ ). One would be tempted to adopt the expansions in Eqs. (13) and
(14) for the complex scaled right and left wavefunctions9R,L(t) with Ej as the
eigenvalues ofH(θ ) and E∗j as the eigenvalues ofH(−θ ). Why this would be
wrong? The problem is that contrary to the situation we had before whereψ j

were the eigenfunction ofH(ε) and also ofH∗(ε), the eigenfunctions ofH(θ ), i.e.,
ψ j ≡ ψ j (θ ), are not eigenfunctions ofH(−θ ). Therefore, although it is true that

9R(t, θ ) =
∑

j

Cj exp(−i E j t/h)ψ j (θ ) (16)

we cannot say on the basis of the above arguments that,

9L(t, θ ) =
∑

j

Cj exp(+i E∗j t/h)ψ j (−θ ) (17)

since,

ψ j (θ ) 6= ψ j (−θ ). (18)

Note that the coefficientsCj are calculated by projecting the initial com-
plex scaled wavepacket on the eigenfunctions of the complex scaled Hamiltonian.
Therefore,{Cj } areθ independent. Yet, it is hard to carry out the back rotation
transformation in the numerical calculations due to the use of finite number of grid
point or finite number of basis functions (Csotoet al., 1990).

Before we continue it is important to remind the reader that the complex
eigenvaluesEj can be divided into two sets. One set consists of complex numbers
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that are independent ofθ (providedθ is sufficiently large). This set contains the
resonance complex eigenvalues. The second set consists of complex numbers that
depend onθ so thatEj (θ ) = |E − Ethreshold

j | exp(−2i θ ), where 0≤ E ≤ ∞. The
members of the second set are associated with the rotating continuum. As we will
see below we can suggest different calculation schemes depending on whether
only the resonances or both the rotating continuum and the resonance states are
populated by the initial wavepacket.

Alternative approach for studying the dynamics governed by resonance states
in NH-QM: As mentioned above we are trying here to look for an approach which
is alternative to the known Fermi’s approach. The motivation is the desire to find an
approach where the “left” / “bra” time-dependent wavepacket would be obtained
by solving the time-dependent non-Hermitian Schr¨odinger equation when time
goes from 0 to−∞. Similar to the evaluation of the “right” / “ket” time-dependent
wavepacket the “left” / “bra” time-dependent wavepacket would be obtained by
solving the time-dependent non-Hermitian Schr¨odinger equation when time goes
from 0 to+∞.

Our suggestion for calculating time-dependent expectation values when the
Hamiltonian is non Hermitian and time-independent is as follows:

1. The “right” time-dependent state (i.e., “ket” state) is the solution of the
time-dependent Schr¨odinger equation with the complex scaled Hamil-
tonian. The solution is in the generalized Hilbert state (square inte-
grable when only resonances are populated by the initial wavepacket).
That is,

9R(t, θ ) =
res∑
j

Cj exp(−Ej t/h)ψ res
j (θ ) (19)

where,

Ej = ε j − i0 j /2. (20)

and,

θ ≥ 0.5 arctan
((
ε j − Ethreshold

J

)/
(0 j /2)

)
. (21)

2. The “left” time-dependent state (i.e., the “bra” state) is obtained in two
steps:
I. The wavepacket at time zero is propagatedbackwardin time, using the

complex conjugate of the complex scaled Hamiltonian given in our case
byH(−θ ). The time-dependent solution can be expressed as (compare
with Eq. (17)),

8(t,−θ ) =
res∑
j

Cj exp(+i E∗j t/h)ψ res
j (−θ ) (22)
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where,

E∗j = ε j + i0 j /2. (23)

and as before,

θ ≥ 0.5θc (24)

where,

θc ≡ arctan
((
ε j − Ethreshold

j

)/
(0 j /2)

)
. (25)

In spite of the fact that we rotate the coordinates into the complex energy
plane by the angle−θ rather than+θ we require the solution to be square
integrable. Note that in the summary section of this manuscript we call
8(t,−θ ) wavefunction a9 “L” state. The quotation marks here imply
that “L” is nota left/bra state.

II The “bra”/“left” state is obtained by carrying out analytical continuation
of 8(t,−θ ) in parameterθ using for example Pad´e approach. Analyti-
cally continuing the complex function8(t,−θ ) calculated forθ ≥ θc,
one gets the complex scaled function8(t, θ ) such that,

9L(t, θ ) ≡ 8(t, θ ) =
res∑
j

Cj exp(+i E∗j t/h)ψ res
j (+θ ). (26)

Following the procedure given above the normalization conditions are redefined
in such a way that every one of the resonance eigenstates is no longer normalized
to unity. Instead they are normalized to a time-dependent factor which decays
exponentially in time, so that,∫

all-space
9L(t, θ )9R(t, θ ) =

res∑
j

(Cj )
2 exp(−0 j t/h). (27)

It is easy to extend this approach to time-dependent Hamiltonians using the
(t, t’) formalism (Pesxin and Moiseyev, 1993b). Then the complex scaled Hamil-
tonianH(θ ) is replaced by the Floquet type operatorH f (θ ) ≡ −i h ∂

∂t ′ +H(t ′, θ ).
The eigenfuctions ofH f (θ ) are the quasi-energy states and can be expanded in
variable t ′ Fourier basis functions. The photo induced resonances areθ inde-
pendent exactly as in the cases where the Hamiltonian is time-independent. A
right resonance eigenstate (i.e., “ket”) is an eigenfunction ofH f (θ ) multiplied by
exp(−i Erest/h), whereEresis the corresponding eigenvalue. A left/“bra” state is an
analytically continued eigenfunction of the complex conjugate ofHf (−θ ) multi-
plied by exp(+i E∗rest/h). Using this formalism we are able to derive an expression
for the high-order harmonic generation spectra.

Alternative approach for studying the dynamics governed by the most gen-
eral case where both resonance and scattering states are populated by the initial
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wavepacket: The analytical continuation of the wavepacket obtained by the back-
ward in time propagation calculations,−θ →+θ , succeeds to generate the left/bra
state given in Eq. (26) due to the fact that the resonance complex eigenvalues are
θ independent. However, the complex eigenvaluses associated with the rotating
continuum depend onθ and under the analytical continuation will transform form
exp(+i E∗(complex)t/h) = exp(+i |E| cos(2θ )t/h) exp(−|E| sin(2θ )t/h) to exp
(+i E(complex)t/h) = exp(+i |E| cos(2θ )t/h) exp(+|E| sin(2θ )t/h) which di-
verges exponentially ast →∞. To overcome this difficulty we propose here:

1. To carry out the analytical continuation inθ of the relevant expectation
values, rather than analytically continuing8(t,−θ ) as defined in Eq. (22),

〈O〉(t, θ ) ≡
∫

all-space8(t,−θ )Ô(θ )9R(t, θ ) dr∫
all-space8(t,−θ )9R(t, θ ) dr

, (28)

whereÔ(θ ) is a complex scaled operator.
2. To carry out the analytical continuation of〈O〉(t, θ ) from θ > θc to θ = 0.

The idea is clear. By rotating back the complex coordinate to the real axis the
scattering/continuum states acquire real eigenvalues as usual and are in the Hilbert
space, whereas the resonance states have complex eigenvalues and eigenfunctions
that diverge exponentially and do not belong to the Hermitian domain of the
Hamiltonian and are not in the Hilbert space. The “trick” is that we rotate
backward the coordinate by carrying out analytical continuation of〈Ô〉(t, θ ) to
〈Ô〉(t, θ = 0). Therefore, in spite of the fact that the resonance eigenfunctions
diverge exponentially atθ = 0 the integrals converge because when we calculate
them atθ 6= 0 the integrands are zero at±∞.

4. SUMMARY

Resonances are defined as the poles of the scattering matrix. The poles are
associated with the complex eigenvalues of the Hamiltonian embedded in the
lower half of the complex plane. The asymptotes of the corresponding eigen-
functions are exponentially diverged. Therefore, the resonance eigenfunctions
are not embedded in the hermitian domain of the Hamiltonian. Upon complex
scaling, however, the resonance eigenfunctions become square integrable. Here
we argue that when the complex scaled Hamiltonian is denoted byH(θ ) where
exp(i θ ) is the complex scaled parameter, then the time-dependent expectation
value of the dynamical quantity O is given by the absolute value of limθ→0(Ô)θ .
The limit θ → 0 is taken using the Pad´e extrapolation procedure. Thecom-
plex quantity (Ô)θ is calculated for sufficiently large value ofθ to make the
resonance states which are populated by the initial wavepacket to be square
integrable. The complex analog of the expectation value ofÔ is defined as
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(9“L” (θ , t)|Ô|9R(θ , t))9R(θ , t). and9“L” (θ , t) are correspondingly the solutions
of the right and left time-dependent Schr¨odinger equations which are defined
as:H(θ )9R(θ , t) = i h ∂

∂t9
R(θ , t) andH(−θ )9“L” (θ , t) = −i h ∂

∂t9
“L” (θ , t). The

initial conditions are defined such that att = 0,9R is the complex scaled initial
wavepacket,̂S(θ )80 whereas9 “L” (t = 0)= Ŝ(−θ )80. By using the (t, t ′) method
as formulated by Peskin and Moiseyev this formulation of the non-Hermitian QM
is immediately applicable also for cases where the Hamiltonian is time-dependent,
regardless if the dependent potential is periodic in time or not. Here we assumed for
the sake of simiplicity but without loss of generality that the nonscaled Hamiltonian
Ĥ = H(θ = 0) is real.

To avoid the need to extrapolate (Ô)θ ≡ 〈Ô〉(θ ) toθ = 0 one can use as a new
orthonormal basis set the eigenfunctions of the unscaled Hamiltonian which are in
the Hilbert space and the resonance eigenfunctions which are obtained by imposing
outgoing wave boundary conditions on the solutions of the Schr¨odinger equation.
The definition of the inner product should be modified as described above.
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